Codeforces Round 935 (Div. 3)

A. Setting up Camp

思路:

  • 先凑b,如果bc的一部分结合起来不能整除3,那么就直接输出-1,因为不能满足每一个帐篷都是三个人的情况

时间复杂度:\(O(1)\)

1
2
3
4
5
6
7
8
9
10
11
void solve() {
int a, b, c;
std::cin >> a >> b >> c;

int t = b % 3;
if (t + c < 3 && t != 0) {
std::cout << "-1\n";
return ;
}
std::cout << 1LL * a + (1LL * b + c + 2) / 3 << "\n";
}

B. Fireworks

思路:

  • 我们先求出在m + 1个时间单位里,ab要放多少次,然后把答案一累加即可
  • \(ans = \lceil \frac{m + 1}{a} \rceil + \lceil \frac{m + 1}{b} \rceil\)

时间复杂度:\(O(1)\)

1
2
3
4
5
6
void solve() {
i64 a, b, m;
std::cin >> a >> b >> m;

std::cout << (m + 1 + a - 1) / a + (m + 1 + b - 1) / b << "\n";
}

C. Left and Right Houses

思路:

  • 用前缀和维护整个序列的01的个数,然后进行枚举位置即可
  • 注意距离计算要用double ,不然会被卡

时间复杂度:\(O(n)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
void solve() {
int n;
std::cin >> n;

std::string a;
std::cin >> a;

std::vector<int> z(n + 1), o(n + 1);
for (int i = 0; i < n; i++) {
if (a[i] == '1') {
o[i + 1] = o[i] + 1;
z[i + 1] = z[i];
} else {
z[i + 1] = z[i] + 1;
o[i + 1] = o[i];
}
}

int ans = 0, dist = 2E9;
for (int i = 0; i <= n; i++) {
int z1 = z[i];
int o1 = o[n] - o[i];
int stanl = (i + 1) / 2, stanr = (n - i + 1) / 2;
if (z1 >= stanl && o1 >= stanr) {
double t = abs(i - n * 1.0 / 2);
if (t < dist) {
dist = t;
ans = std::max(ans, i);
}
}
}
std::cout << ans << "\n";
}

D. Seraphim the Owl

思路:

  • 可以发现,不管怎么取,我们一定会把 min(a[i], b[i])的那个元素取走。
  • 所以只需要用 sum 维护前n - m个最小价值之和,然后最后1个元素考虑加最小的那一个即可

时间复杂度:\(O(n)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
void solve() {
int n, m;
std::cin >> n >> m;

std::vector<int> a(n + 1), b(n + 1);
for (int i = 1; i <= n; i++) {
std::cin >> a[i];
}
for (int i = 1; i <= n; i++) {
std::cin >> b[i];
}

i64 ans = 1E18, sum = 0;
for (int i = n; i > 0; i--) {
if (i <= m) {
ans = std::min(ans, sum + a[i]);
}
sum += std::min(a[i], b[i]);
}
std::cout << ans << "\n";
}