Codeforces Round 923 (Div. 3)

A. Make it White

思路:

  • 找字符B的第一个位置和最后一个位置就行

时间复杂度:\(O(n)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
void solve() {
int n;
std::cin >> n;

std::string s;
std::cin >> s;

int cnt = 0;
int l = -1, r = -1;
for (int i = 0; i < n; i++) {
if (s[i] == 'B') {
r = i;
if (cnt == 0) {
l = i;
}
cnt++;
}
}
std::cout << r - l + 1 << "\n";
}

B. Following the String

思路:

  • 每一位从字符a开始累加即可

时间复杂度:\(O(n)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
void solve() {
int n;
std::cin >> n;

std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}

int mx = 0;
std::vector<std::vector<int>> p(n + 1);
for (int i = 0; i < n; i++) {
p[a[i]].push_back(i);
mx = std::max(mx, a[i]);
}

std::vector<char> ans(n);
for (int i = 0; i <= mx; i++) {
char c = 'a';
for (auto x : p[i]) {
ans[x] = char(c);
c++;
}
}
for (int i = 0; i < n; i++) {
std::cout << ans[i];
}
std::cout << "\n";
}

C. Choose the Different Ones!

思路:

  • 容斥原理

时间复杂度:\(O(nlogn)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
void solve() {
int n, m, k;
std::cin >> n >> m >> k;

std::set<int> u, v;
std::vector<int> a(n), b(m);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
u.insert(a[i]);
}
for (int i = 0; i < m; i++) {
std::cin >> b[i];
v.insert(b[i]);
}

int x = 0, y = 0, z = 0;
for (int i = 1; i <= k; i++) {
if (u.count(i) && v.count(i)) {
z++;
} else if (u.count(i)) {
x++;
} else if (v.count(i)) {
y++;
} else {
std::cout << "NO\n";
return ;
}
}
if (x <= k / 2 && y <= k / 2) {
if (x + y + z == k) {
std::cout << "YES\n";
return ;
}
}
std::cout << "NO\n";
}

D. Find the Different Ones!

思路:

  • set每次找不等的分割点,然后upper_bound左端点即可

时间复杂度:\(O(nlogn)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
void solve() {
int n;
std::cin >> n;

std::vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
std::cin >> a[i];
}
std::set<int> S;
for (int i = 2; i <= n; i++) {
if (a[i] != a[i - 1]) {
S.insert(i);
}
}

int q;
std::cin >> q;

while (q--) {
int l, r;
std::cin >> l >> r;

auto it = S.upper_bound(l);
if (*it > r || it == S.end()) {
std::cout << "-1 -1\n";
} else {
std::cout << l << " " << *it << "\n";
}
}
std::cout << "\n";
}

E. Klever Permutation

思路:

  • 用滑动窗口的思想,每次向后推进一个位置就要丢掉前面一个数,偶数位递增,奇数位递减

时间复杂度:\(O(n)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
void solve() {
int n, k;
std::cin >> n >> k;

int l = 1, r = n;
std::vector<int> ans(n + 1);
for (int i = 1; i <= k; i++) {
for (int j = i; j <= n; j += k) {
if (i & 1) {
ans[j] = r;
r--;
} else {
ans[j] = l;
l++;
}
}
}

for (int i = 1; i <= n; i++) {
std::cout << ans[i] << " \n"[i == n];
}
}

F. Microcycle

思路:

  • 可以用kruskal来求出最小生成树,首先我们把所有的点按照边权来从大到小排序,然后选取一个点集的起始点和终点,当两个点已经在一个集合中,就在这个集合中开始建边,然后跑dfs进行寻找路径,而由于最初已经把边权值按从大到小的顺序排列,所以当最后合并两个点的集合时,最小权值就是最后一个进入集合的边权

时间复杂度:\(O(mlogm+m\alpha(n))\)

附:\(\alpha(n)\) 是阿克曼函数的反函数,可以视作常数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
struct DSU {
std::vector<int> f, siz;

DSU() {}
DSU(int n) {
init(n);
}

void init(int n) {
f.resize(n);
std::iota(f.begin(), f.end(), 0);
siz.assign(n, 1);
}

int find(int x) {
while (x != f[x]) {
x = f[x] = f[f[x]];
}
return x;
}

bool same(int x, int y) {
return find(x) == find(y);
}

bool merge(int x, int y) {
x = find(x);
y = find(y);
if (x == y) {
return false;
}
siz[x] += siz[y];
f[y] = x;
return true;
}

int size(int x) {
return siz[find(x)];
}
};

constexpr int inf = 2E9;

void solve() {
int n, m;
std::cin >> n >> m;

std::vector<std::array<int, 3>> a(m);
for (int i = 0; i < m; i++) {
int u, v, w;
std::cin >> u >> v >> w;
u--, v--;

a[i] = {u, v, w};
}

std::sort(a.begin(), a.end(), [&](auto i, auto j) {
return i[2] > j[2];
});

DSU f(n);

int U, V;
int cnt = 1, ans = inf;
std::vector<std::vector<int>> g(n);
auto kruskal = [&]() {
for (auto [u, v, w] : a) {
if (!f.merge(u, v)) {
ans = w;
U = u, V = v;
} else {
g[u].push_back(v);
g[v].push_back(u);
}
}
};

kruskal();

std::vector<int> path;
auto dfs = [&](auto self, int u, int fa) -> bool {
if (u == V) {
path.push_back(u);
return true;
}
for (auto f : g[u]) {
if (f == fa) continue ;
if (self(self, f, u)) {
path.push_back(u);
return true;
}
}
return false;
};

dfs(dfs, U, -1);

std::cout << ans << " " << path.size() << "\n";
for (auto x : path) {
std::cout << x + 1 << " ";
}
std::cout << "\n";
}

signed main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);

int t;
std::cin >> t;

while (t--) {
solve();
}

return 0;
}